计算正态分布概率常见公式的解释

问答4mos agorelease 鱼渣渣网
29 0
计算正态分布概率常见公式的解释

计算正态分布概率常见公式的解释。


正态分布是以均值μ为中心的钟形曲线,也称为高斯分布。为了描述正态分布中某个值的概率,使用以下两个公式:

1. 概率密度函数(Probability Density Function,PDF)

正态分布的概率密度函数表示为:

f(x) = (1 / (σ * √(2π))) * e^(-((x-μ)^2 / (2 * σ^2)))

其中,μ是正态分布的均值,σ是正态分布的标准差,e是自然对数的底数(也称为欧拉数),π是圆周率(约等于3.14159),√是平方根。

公式中的f(x)表示x处的概率密度,即在分布曲线上的高度。概率密度越高,表明该区域内数据点的密集程度越高。

2. 累积分布函数(Cumulative Distribution Function,CDF)

正态分布的累积分布函数表示为:

F(x) = (1/2)[1 + erf((x-μ) / (σ * √2))]

其中,erf是误差函数,F(X)表示小于或等于X的概率,也称为累积分布函数的值。

假设要计算X小于等于a的概率,可以使用下面的公式:

P(X ≤ a) F(a) = (1/2)[1 + erf((a-μ) / (σ * √2))]

这个公式直接使用CDF函数F(x)即可。

© Copyright notes

Related posts

No comments

No comments...